
Exploring Digital I&C Upgrades

Roundtable / Dinner

Nuclear Energy Insider
Power Uprate Conference
--June 17, 2011

Exploring Digital I&C Upgrades Participants

Why Are We Here?

- Knowledge exchange
 - Opportunities for improved reliability / output
 - Discuss challenges
- Share insights / perspectives
 - Utilities (demand side)
 - Vendors & suppliers (supply side)
 - Advisors, consultants
- Timely issues with a lot of associated questions
 - Need for I&C upgrades
 - State of the industry; progress
 - Opportunities and challenges

Situation Analysis – State of Industry

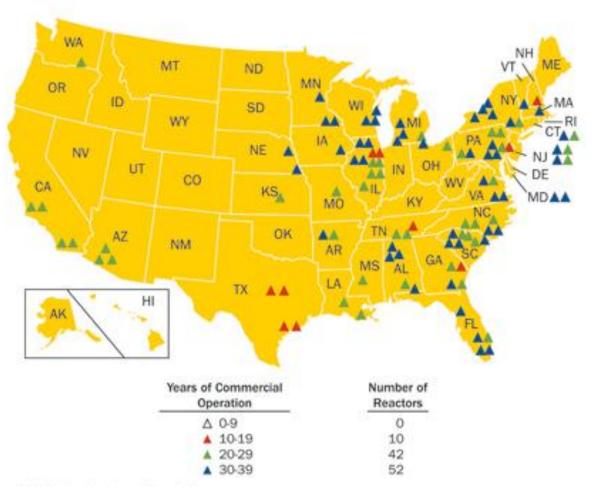
Operating Plants

- 104 U.S. plants, mostly analog instrumentation & control systems
- ROW, some 336 plants, though some have upgraded various parts of I&C systems to digital
- New Builds (Digital)
 - 4 Units in the U.S. underway
 - Many additional plants to come, when?
- Regulatory Policy progressing
 - Plants in Sweden, Switzerland, others more advanced
 - NRC has moved slowly due to cyber security concerns

"All new NPPs are being designed with integrated digital I&C as the backbone of protection, controls, alarms, and display and monitoring" --NRC Website

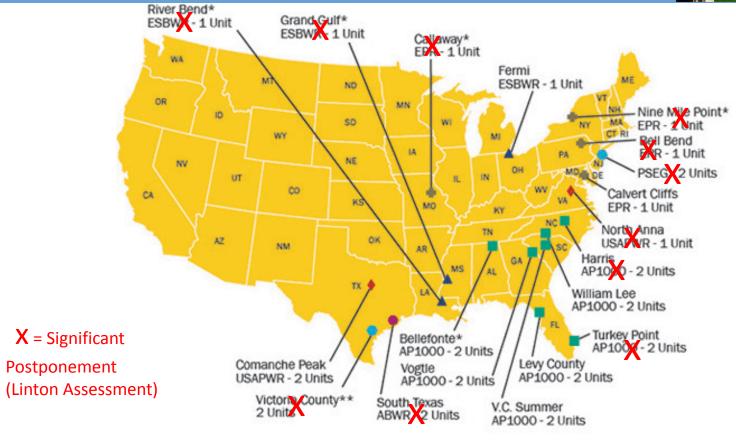
Situation Analysis – State of Industry

- Typically, U.S. plants using 30-40 year old I&C technology
 - Some plants experienced reduced reliability/productivity
 - Upgrades driven by obsolescence, economics
- Globally, plants in various stages of upgrade
 - Entergy, selective, partial upgrades
 - Some European plants already have all-digital reactor protection systems (France, Germany, Japan, Korea, Sweden, Switzerland, UK)
 - Oconee's project is comprehensive digital upgrade of major safety related systems; first of a kind for U.S.


"The NRC is committed to licensing digital technology in safety system applications"
--NRC Website

104 Operating Reactors

U.S. Commercial Nuclear Power Reactors—Years of Operation



Source: U.S. Nuclear Regulatory Commission

New Nuclear Power Plants

Proposed Reactors – How Many Likely 5 Years?

^{*}Review Suspended by Applicant

^{**} COL Application Amended by Applicant to ESP on 03/25/2010

Key Questions

- What are the pros and cons of upgrading I&C systems to more modern digital technology?
- What is current state in all systems? In safety-related systems?
- Is there an advantage to making conversions in connection with Uprates or Maintenance & Modernization projects?
- How have cyber-security concerns been resolved?
- How long do such programs require? How disruptive?
- What are typical costs?
- What is role of licensee vs. vendors & contractors?
- Others (lessons learned, etc.)

Participant Experience

- Varied experiences
 - APS (Palo Verde)
 - AREVA
 - Constellation
 - Duke (Oconee)
 - Eskom
 - Fluor
 - FPL
 - Invensys
 - OSIsoft
 - Worley-Parsons
 - Zachry

Duke – Oconee Comprehensive Digital I&C Upgrade

- Project team has completed digital upgrades of systems
 - Integrated control system
 - Main turbine control system
 - Control rod drive system
 - Main generator voltage regulator
 - Process control system
 - Emergency power
 - Automatic feedwater isolation system

"Duke Energy has become the industry leader in addressing the associated technical and regulatory issues" of Digital upgrades

Duke Upgrades Turbine I&C

Objectives

- Reduce cost of downtime and unplanned outages
- Eliminate unnecessary system trips
- Eliminate single point of failure; provide redundancy
- Reduce inordinate time for recalibration

Methods

- Improve diagnostic software for troubleshooting
- Upgrade cumbersome analog interfaces
 - Switches, meters
 - Running tests, obtaining readings
- Execute start-up and valve tests more efficiently
- Hardware/software solutions
 - Invensys, Triconex, Wonderware

Pros and Cons of Upgrade

Pros

- Improve safety and operational performance
- Improve plant reliability
- Eliminate obsolescence of equipment & systems
- Improve productivity
- Improved safety
- Positive ROI

Cons

- Capital investment
- Long term program
- Regulatory validation
- Equipment /design practices significantly different
- Re-training required

"...digital technology has the potential to improve safety and operational performance" –NRC

Current State

- Use of digital systems not new
 - In 1980s some digital was introduced in subsystems & auxilliary areas
 - In 1990s began to be used in data logging, control and display for non safety related functions
 - Extensively utilized in fossil power and other industries
- Outside U.S.
 - Japan first fully digital I&C system installed in 1996
 - France, UK, Korea, Sweden, Germany, others implemented
- In past, U.S. digital I&C systems were used in
 - Feedwater, recirculation, demineralizer control
 - Main turbine control
- Duke Oconee (Unit 1) first comprehensive safety-related digital I&C system, now operating

When to Upgrade?

- Regulatory process
 - What are the licensing requirements?
 - How long did it take?
 - What will be different for Duke in future? For others?
- Is there an advantage to making conversions in connection with Uprates or Maintenance & Modernization projects?
 - How has Duke taken advantage of scheduled outages and other plant down time for this and other capital work?
 - Duke has done key installations during scheduled outages
 - What are the lessons learned?

Cyber-Security Issues

- How have cyber-security concerns been resolved?
 - Cyber-security has been a key concern of NRC
 - How has Duke dealt with this challenge?
 - How have Asian & European plants dealt with it?

"Oconee's software was designed with no external network connections"

Program Management Issues

- Duke has been planning and implementing it digital I&C upgrade for a decade
 - Why has it taken so long?
 - How long should such programs require in the future?
 - How disruptive is this to ongoing operations?
- What would we expect costs to be?
 - Were vendors expected to invest in this FOAK project?

Program Management Issues

- What is the role of licensee vs. vendors & contractors in digital upgrade of major safety systems?
 - What size staff over the life cycle of this program has Duke devoted to the program?
 - How many and what kinds of contractors and consultants have been used?
 - What is the role of hardware and software vendors?

Lessons Learned

- What lessons can Duke share with other utilities?
- How will Duke do differently on units 2 and 3 as it seeks to implement digital upgrades to these units?
 - Unit 2 upgrade expected in 2012
 - Unit 3 in 2013
 - New panels for 3 reactors: \$250 mil
 - Expected to last the life of the plants

Appendix

Linton Consulting

Insights for Industry and Government

Who Is Linton Consulting?

- A professional practice providing independent insights and advisory services to industry and government, focused in energy
- Help with business strategy, market development, trend analyses, scenarios and futuristic market/industry visioning
- Strategic View process that provides high level insights on the future state of industries and markets; developed through ongoing analyses and executive interviews
- Services leading to sound business decisions, plans and actions
- Partnering relationships with UxC, Nuclear Energy Insider, and InnovaNet

Who is Linton Consulting?

- Independent practice providing strategic development and market development services in Energy and Manufacturing
 - Over 30 years experience with large engineering and construction firms: CH2M HILL, Lockwood Greene, Fluor
 - Over a decade of consulting experience
 - Extensive industry contacts & ongoing interviews

Strategic View Industry Studies

- 2010 Energy Challenges/ Energy Parks
- 2008 Nuclear Renaissance
- 2007 Oil, Gas, Chemicals
- 2006 Energy
- 2005 Mfg./Industrial
- 2004 Food & Beverage
- 2003 Pharmaceutical
- 2002 Power
- 2001 Infrastructure Life Cycle, Others

Past Linton Industry Studies

- Oil & Gas
- Electric Power
- Engineering and Construction
- Water/Wastewater
- Environmental
- Asia/Pacific
- Market Reports Series

2010 Research Conducted – For SRNS

115 Interviews, Discussions, and Meetings*

Ameresco

American Nuclear Society

Arizona Clean Fuels

B&W

BetterPlace

BP

Building Construction Trades Dept. (AFL-CIO)

Canup & Associates

Carolinas' Nuclear Cluster

CH2M Hill

ConocoPhillips

CSIS

Duke Energy

DOE

DOE-EM

Dow Chemical

Eastman Chemical

Economic Development

Partnership

EIA

EPRI

Exelon Corporation

Fluor

Gasification Technologies

Council

General Atomics

General Electric

GE- Hitachi

George Mason University

Honeywell

Hyperion Power

Marathon

Marston Consulting

MIT

NEI

New Carolina

NNSA

NRC

Peabody Coal

PJM Interconnection

Progress Energy

Rentech

S-4 Energy Solutions

SCANA

SC Regional Development

Senator Graham's Office

Senator DeMint's Office

Shaw Group

Siemens-America

Southern Company

SRNL

SRNS

SRNS- Honeywell

SRNS- Northrup Grumman

SRS-CRO

TerraPower

Technology Ventures

Three Rivers Solid Waste

Authority

University of South Carolina

UOP - Honeywell

USEA

Westinghouse

*Some organizations had multiple interviews

What is Strategic View?

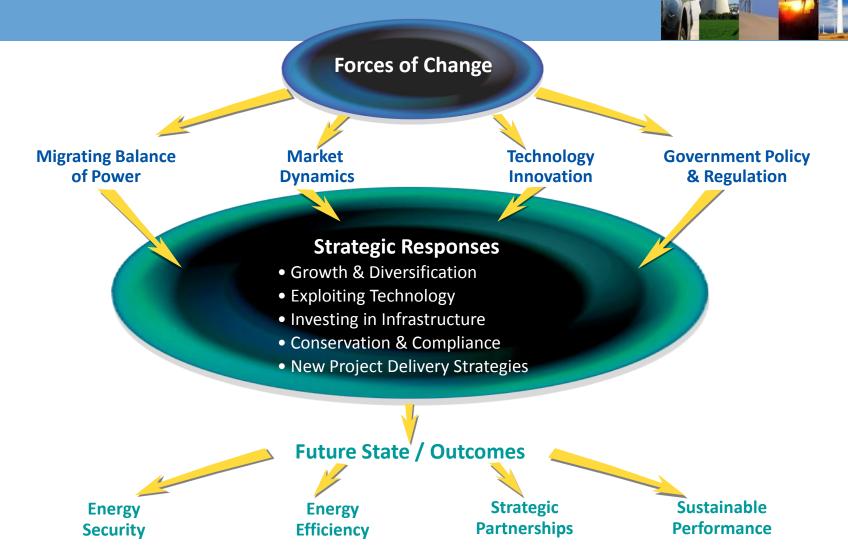
Research model

- Used 14 years; 5 in energy
- Forces affecting the future of the energy industry
- Industry responses
- Where it is leading the future state/outcomes

Process

- Interviews with executives and thought leaders
- Research & analysis
- Executive Roundtable
- Follow up & plan integration

Forces of Change


Industry Responses

Future State / Outcomes

Strategic View – Energy (Example)

Executive Roundtables

- Common purpose
 - Convene executives and thought leaders for knowledge exchange
 - Expand understanding
 - Share perspectives
 - Confirm/challenge paradigms
 - Advise leadership
 - Uncover ideas and opportunities for your organization
 - Explore Future trends and challenges
 - Establish practical, realistic path forward