
Future of Nuclear – Large or Small?

--Impact on Economic Development

Roundtable / Dinner

Nuclear Energy Insider
SMR Conference
--April 24, 2012

The Nuclear Supply Chain

--What's the New Vision?

K&L GATES

Linton Consulting

GENERAL DYNAMICS Electric Boat

Why Are We Here?

- Knowledge exchange
 - Status of nuclear revival
 - Challenges for the Supply Chain
- Share insights / perspectives
 - Utilities (demand side)
 - Vendors & suppliers (supply side)
 - Advisors, associations & advocacy groups
- Timely issues with a lot of associated questions
 - Growing electricity demand
 - Natural gas prices
 - Financing issues
 - Fukushima
 - Quality requirements

Key Questions

- How has nuclear power driven economic development?
- How will SMRs impact development in the future?
 - Southeastern U.S.
 - Overall U.S.
 - China, India
 - Developing countries
- How might economic development occur differently in a world of many SMRs?
 - Major countries
 - Remote areas or island economies
- Where would the greatest differences occur?

Key Questions

- How would the generation mix and degree of electrification change?
- What are the competitive issues for SMRs Vs. full-scale reactors Vs. natural gas or coal?
- Could utility industry structure be affected? (REAs, Coops)
- How might huge electricity users be affected?
 - Aluminum
 - Oil sands
 - Desalination
- What will SMR supply chains look like?
- Where should SMRs be manufactured?

Overview

- Today we have 104 NPP plants in the U.S. and 320 in the R.O.W.
- Active New Build is in progress in
 - China, Russia, UK, U.S., U.A.E., Saudi, France, Finland, Poland, Turkey,
 Vietnam, others
- Economic impact to a region is significant
 - \$400 500 million in annual O&M spending per year
 - Hundreds of millions to billions in capital spending upgrades
 - Tens of billions for new build
- Low cost, clean electricity provides tremendous stimulus for regional economic development
- Because nuclear provides baseload power, it will continue to have an important role in the future generation mix

Large Vs. Small Reactors

 While large NPPs offer many advantages, they are not suitable for many situations

- Too large for some electric grids
- Huge front end capital expenditures
- Small modular reactors
 - Offer smaller output
 - Incremental growth units
 - Lower capital investment
 - Factory-built economies of mass production
 - May replace coal plants

Small Modular Reactors

Different economic profile

- Lower capital cost (spread over time)
- Decentralized generation?
- What about O&M expenditures?
- Employment?
- Lower transmission infrastructure cost?
- Impact on "all in" electricity costs?

SMR Factory

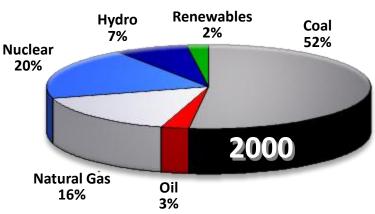
- How large?
- Capital expenditure
- Output and economic value
- Employment

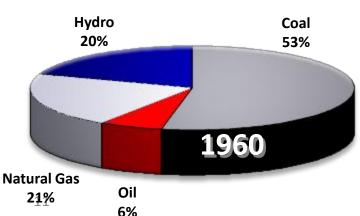
SMR Future

• What would a world of many SMRs look like?

SMR Future

- How would the generation mix be affected?
 - Will there be more nuclear generation as a result?
 - Will having mass production lower capital costs?
 - Will having greater numbers of reactors lower operating costs?
- How would having more decentralized generation impact costs?


Future Generation Mix?



 U.S. Generation mix changes over time

- Nuclear share from zero to 20%
- Global growth expected

SMRs for Military

• What are advantages – disadvantages?

SMR Impact on Utility Structure

Considerations for REAs, Municipalities, Coops

SMRs for Industry

- Large Electricity Users
 - Aluminum
 - Oil sands (Canada)
 - Desalination
 - Use heat directly?
 - Use electricity?

Supply Chain Perspective

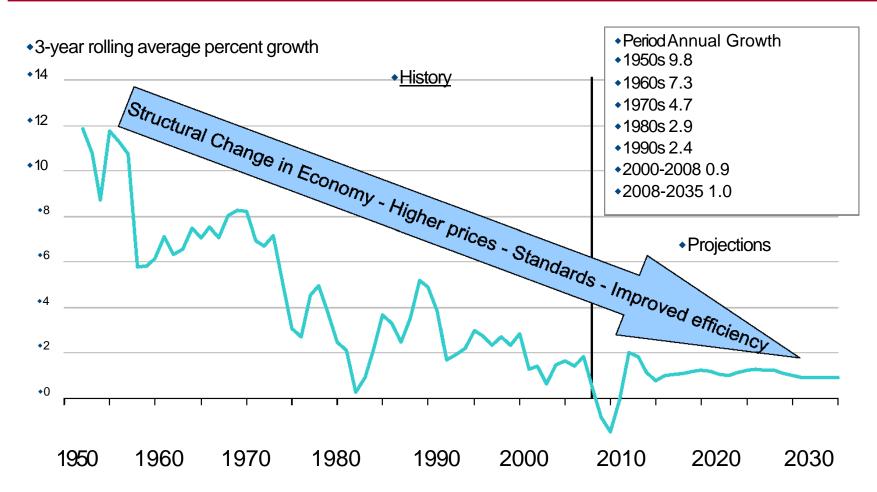
- What would be different for the SMR S-C?
 - Thousands of components, assemblies, devices, services
 - High barriers to entry: Nuclear Quality Requirements
 - NQA-1
 - Commercial Grade Dedication

Sourcing

- Local suppliers possible?
- Limitations due to high quality requirements and specifications; local not always possible?
- Examples from traditional large nuclear:
 - Forged reactor vessels from Japan Steel Works (JSW)
 - Software from Invensys (U.S.)
 - Pumps, valves, controls from Curtiss Wright (U.S.)

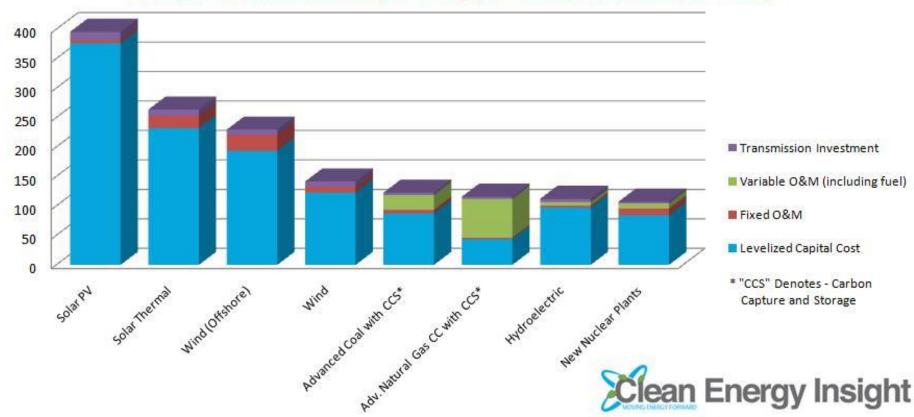
Manufacturing Locations

- U.S.
- Global


"XXX"

Appendix

U.S. Electricity Use Growth – Slowing


Linton Consulting

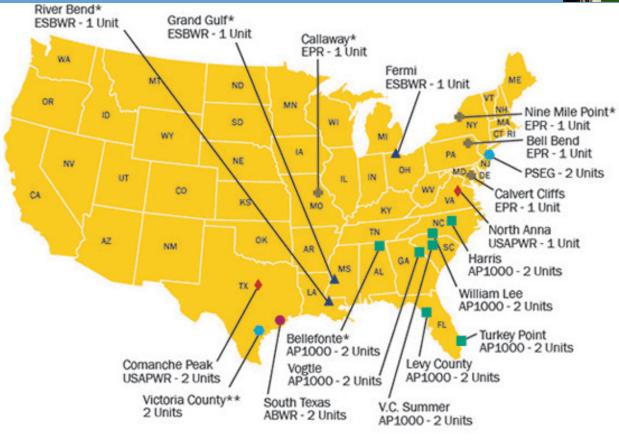
Comparing Generation Costs

Comparing Clean Energy Costs

Total System Levelized Cost per Energy Source (2007 Dollars per MWh)

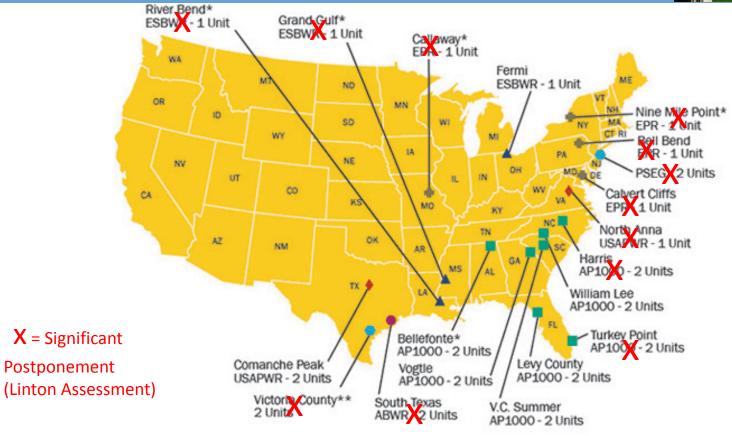
Linton Consulting

Global Growth is Likely


WNA NUCLEAR CENTURY OUTLOOK							
MAJOR NUCLEAR PROGRAMMES*	2008	2030 Low	2030 High	2060 Low	2060 High	2100 Low	2100 High
Units - 1GWe							_
Belarus	0	2	5	5	8	5	10
Belgium	6	6	8	8	10	8	22
Brazil	2	10	30	40	100	70	330
Bulgaria	2	4	7	5	7	5	7
Canada	13	20	30	25	40	30	85
China	9	35	100	150	750	500	2800
Czech Republic	3	5	7	5	12	5	15
Finland	3	5	7	8	10	8	11
France	63	65	75	80	110	80	130
Germany	20	20	50	40	80	80	175
Hungary	2	4	5	4	8	5	12
India	4	20	70	60	350	200	2750
Japan	48	55	70	80	140	80	200
Lithuania/ Latvia/ Estonia	1	4	6	5	8	5	8
Netherlands	1	1	5	7	20	10	35
Romania	1	4	10	5	20	10	25
Russia	22	30	70	75	180	100	200
Slovakia	2	3	4	4	5	5	7
Slovenia	1	1	1	1	2	1	2
South Korea (and North Korea)	18	25	50	45	80	70	145
Spain	7	8	20	20	50	25	60
Sweden	9	10	15	10	18	10	18
'tzerlan'				-	10	5	

Source: World Nuclear Association Website

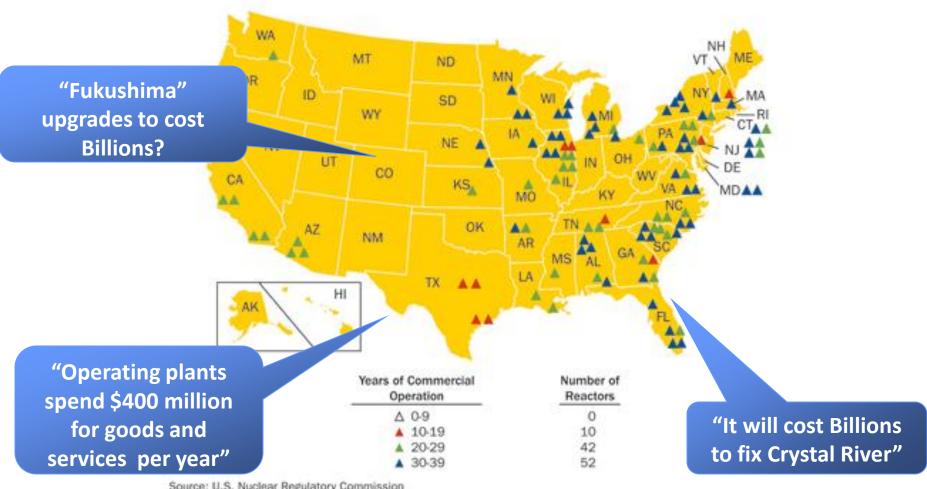
Scenarios for Nuclear Power Proposed Reactors – How Many?


^{*}Review Suspended by Applicant

^{**} COL Application Amended by Applicant to ESP on 03/25/2010

Scenarios for Nuclear Power Proposed Reactors – How Many Likely 5 Years?

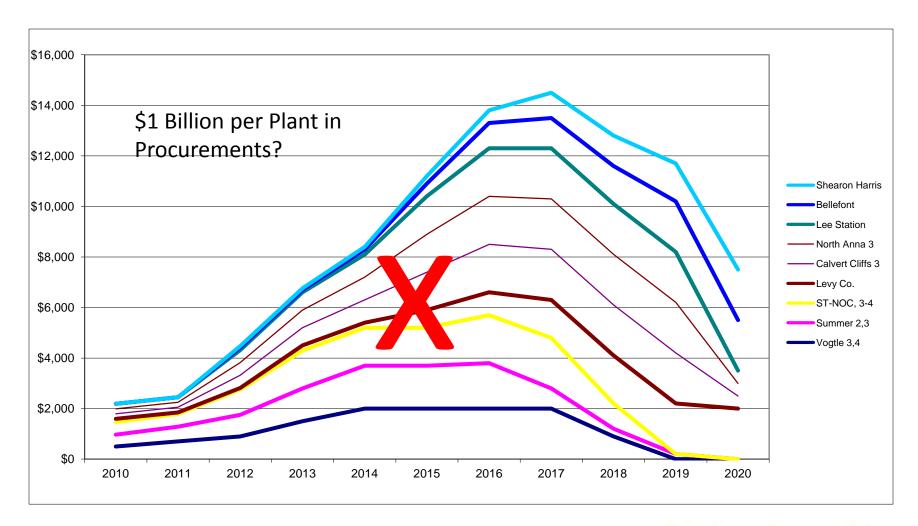
^{*}Review Suspended by Applicant



^{**} COL Application Amended by Applicant to ESP on 03/25/2010

Scenarios for Nuclear Power Operating Reactors - 104

U.S. Commercial Nuclear Power Reactors—Years of Operation



Source: U.S. Nuclear Regulatory Commission

Linton Consulting

Nuclear Plant Capital Spending \$8 - 10B Supplier Market to 2020 ?

U.S. Electricity Markets

- Regulated (especially in Southeast)
 - Traditional utilities, regulated monopolies
 - Southern, SCANA, DTE, Dominion, Duke, Progress, FPL
 - Exelon, Entergy (have both)
 - PUCs closely monitor & control
 - Can get LGs <u>and</u> CWIP (in favorable states)
- Unregulated, competitive (NE, MW, Texas)
 - Merchant companies, no guaranteed returns
 - Constellation
 - NRG
 - Exelon, Entergy (Have both)
 - Can't get CWIP; must have LGs

"Are we seeing the merchant market leading to short term decisions that are not in the public's best interest?"

--Utility Financial Officer

Linton Consulting

Insights for Industry and Government

Who Is Linton Consulting?

- A professional practice providing independent insights and advisory services to industry and government
- Focus: Energy, Power, Nuclear
- Business strategy, market development, diversification, trend analyses, scenarios and visioning
- Executive relationships and introductions
- Strategic View
 - Process develops high level insights on the future state
 - Ongoing analyses and executive interviews
 - Strategic View Nuclear out Q3 / 2012
- Services leading to sound business strategies, decisions, plans and implementation

What is Strategic View?

Research model

- Used 15 years; 5 in energy
- Forces affecting the future of the energy industry
- Industry responses
- Where it is leading the future state/outcomes

Process

- Interviews with executives and thought leaders
- Research & analysis
- Executive Roundtable
- Follow up & plan integration

Forces of Change

Industry Responses

Future State / Outcomes

Executive Roundtables

- Common purpose
 - Convene executives and thought leaders for knowledge exchange
 - Expand understanding
 - Share perspectives
 - Confirm/challenge paradigms
 - Advise leadership
 - Uncover ideas and opportunities for your organization
 - Explore Future trends and challenges
 - Establish practical, realistic path forward